Abstract
<p style='text-indent:20px;'>We provide a new multiplicity result for a weighted <inline-formula><tex-math id="M1">\begin{document}$ p(x) $\end{document}</tex-math></inline-formula>-biharmonic problem on a bounded domain <inline-formula><tex-math id="M2">\begin{document}$ \Omega $\end{document}</tex-math></inline-formula> of <inline-formula><tex-math id="M3">\begin{document}$ \mathbb R^n $\end{document}</tex-math></inline-formula> with Navier conditions on <inline-formula><tex-math id="M4">\begin{document}$ \partial\Omega $\end{document}</tex-math></inline-formula>. Our approach, of variational nature, requires a suitable oscillating behavior of the nonlinearity and the associated weight to be compactly supported in <inline-formula><tex-math id="M5">\begin{document}$ \Omega $\end{document}</tex-math></inline-formula>.</p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.