Abstract

We study the existence of global-in-time weak solutions to a coupled microscopic–macroscopic bead-spring model which arises from the kinetic theory of diluted solutions of polymeric liquids with noninteracting polymer chains. The model consists of the unsteady incompressible Navier–Stokes equations in a bounded domain Ω ⊂ ℝd, d = 2, 3, for the velocity and the pressure of the fluid, with an extra-stress tensor as right-hand side in the momentum equation. The extra-stress tensor stems from the random movement of the polymer chains and is defined through the associated probability density function which satisfies a Fokker–Planck type degenerate parabolic equation. Upon appropriate smoothing of the convective velocity field in the Fokker–Planck equation, and in some circumstances, of the extra-stress tensor, we establish the existence of global-in-time weak solutions to this regularised bead-spring model for a general class of spring-force-potentials including in particular the widely used FENE (Finitely Extensible Nonlinear Elastic) model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.