Abstract
The purpose of this paper is twofold. The first aim is to present an extension of the results on the existence of Walrasian equilibrium to the infinite dimensional setting. The result depends on two crucial assumptions. These are the compactness of the collection of feasible allocations and the non-emptiness of the interior of the production set. The proof is a direct generalization of Bewley's (1972) proof for the L ∞ case. The second purpose of this paper is to show that the recent result of Mas-Colell (1986) on the existence of equilibrium for exchange economies on Banach lattices can be obtained through an argument based on the result outlined above. That is, exchange economies on Banach lattices with ‘uniformly proper’ preferences behave as though they were production economies in which the production sets have non-empty interior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.