Abstract
In this paper, we provide a new result of the existence of equilibria for set-valued maps on bounded closed subsets K of Hilbert spaces. We do not impose either convexity or compactness assumptions on K but we assume that K has epi-Lipschitz sections, i.e. its intersection with suitable finite dimensional spaces is locally the epigraph of Lipschitz functions. In finite dimensional spaces, the famous Brouwer theorem asserts the existence of a fixed point for a continuous function from a compact convex set K to itself. Our result could be viewed as a kind of generalization of this classical result in the context of Hilbert spaces and when the function (or the set-valued map) does not necessarily map K into itself ( K is not invariant under the map). Our approach is based firstly on degree theory for compact and for condensing set-valued maps and secondly on flows generated by trajectories of differential inclusions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.