Abstract

By using Green's function, the problem is converted into an integral equation. It is shown that there exists a $t_b$ such that, for $0\leq t\lt t_b$, the integral equation has a unique nonnegative continuous solution $u$; if $t_b$ is finite, then $u$ is unbounded in $[0, t_b)$. Then, $u$ is proved to be the solution of the original problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.