Abstract

We show that every parabolic orbit of a two-degree of freedom integrable system admits a $C^\infty$-smooth Hamiltonian circle action, which is persistent under small integrable $C^\infty$ perturbations. We deduce from this result the structural stability of parabolic orbits and show that they are all smoothly equivalent (in the non-symplectic sense) to a standard model. Our proof is based on showing that every symplectomorphism of a neighbourhood of a parabolic point preserving the integrals of motion is Hamiltonian whose generating function is smooth and constant on the connected components of the common level sets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.