Abstract

In this paper we consider a family of high-order iterative methods which is more efficient than the Newton method to approximate a solution of symmetric algebraic Riccati equations. In fact, this paper is devoted to the convergence study of a k-steps iterative scheme with low operational cost and high order of convergence. We analyze their accessibility and computational efficiency. We also obtain results about the existence and localization of solution. Numerical experiments confirm the advantageous performance of the iterative scheme analyzed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.