Abstract
Inverse problems of recovering surface fluxes on the boundary of a domain from pointwise observations are considered. Sharp conditions on the data ensuring existence and uniqueness of solutions in Sobolev classes are exposed. They are smoothness conditions on the data, geometric conditions on the location of measurement points, and the boundary of a domain. The proof relies on asymptotics of fundamental solutions to the corresponding elliptic problems and the Laplace transform. The inverse problem is reduced to a linear algebraic system with a nondegerate matrix.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.