Abstract
Let (X,d,m) be a proper, non-branching, metric measure space. We show existence and uniqueness of optimal transport maps for cost written as non-decreasing and strictly convex functions of the distance, provided (X,d,m) satisfies a new weak property concerning the behavior of m under the shrinking of sets to points, see Assumption 1. This in particular covers spaces satisfying the measure contraction property.We also prove a stability property for Assumption 1: If (X,d,m) satisfies Assumption 1 and m˜=g⋅m, for some continuous function g>0, then also (X,d,m˜) verifies Assumption 1. Since these changes in the reference measures do not preserve any Ricci type curvature bounds, this shows that our condition is strictly weaker than measure contraction property.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annales de l'Institut Henri Poincaré C, Analyse non linéaire
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.