Abstract

The compressible Navier–Stokes–Korteweg system is considered on \({\mathbb{R}^3}\) when the external force is periodic in the time variable. The existence of a time periodic solution is proved for a sufficiently small external force by using the time-T-map related to the linearized problem around the motionless state with constant density and absolute temperature. The spectral properties of the time-T-map is investigated by a potential theoretic method and an energy method in some weighted spaces. The stability of the time periodic solution is proved for sufficiently small initial perturbations. It is also shown that the \({L^\infty}\) norm of the perturbation decays as time goes to infinity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.