Abstract

We investigate in this paper the existence of a metric which maximizes the first eigenvalue of the Laplacian on Riemannian surfaces. We first prove that, in a given conformal class, there always exists such a maximizing metric which is smooth except at a finite set of conical singularities. This result is similar to the beautiful result concerning Steklov eigenvalues recently obtained by Fraser and Schoen (Sharp eigenvalue bounds and minimal surfaces in the ball, 2013). Then we get existence results among all metrics on surfaces of a given genus, leading to the existence of minimal isometric immersions of smooth compact Riemannian manifold (M, g) of dimension 2 into some k-sphere by first eigenfunctions. At last, we also answer a conjecture of Friedlander and Nadirashvili (Int Math Res Not 17:939–952, 1999) which asserts that the supremum of the first eigenvalue of the Laplacian on a conformal class can be taken as close as we want of its value on the sphere on any orientable surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.