Abstract
This paper is concerned with the existence, uniqueness, and nonlinear stability of stationary solutions to the Cauchy problem of the full compressible Navier–Stokes–Korteweg system effected by the given mass source, the external force of general form, and the energy source in R3. Based on the weighted L2-method and some delicate L∞ estimates on solutions to the linearized problem, the existence and uniqueness of stationary solution are obtained by the contraction mapping principle. The proof of the stability result is given by an elementary energy method and relies on some intrinsic properties of the full compressible Navier–Stokes–Korteweg system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.