Abstract

Enhancing gasoline detergency is pivotal for enhancing fuel efficiency and mitigating exhaust emissions in gasoline vehicles. This study investigated gasoline vehicle emission characteristics with different gasoline detergency, explored synergistic emission reduction potentials, and developed versatile emission prediction models. The results indicate that improved fuel detergency leads to a reduction of 5.1% in fuel consumption, along with decreases of 3.2% in total CO2, 55.4% in CO, and 15.4% in HC emissions. However, during low-speed driving, CO2 and CO emissions reductions are limited, and HC emissions worsen. A synergistic emission reduction was observed, particularly with CO exhibiting a pronounced reduction compared to HC. The developed deep-learning-based vehicle emission model for different gasoline detergency (DPVEM-DGD) enables accurate emission predictions under various fuel detergency conditions. The Pearson correlation coefficients (Pearson's r) between predicted and measured values of CO2, CO, and HC emissions before and after adding detergency agents are 0.913 and 0.934, 0.895 and 0.915, and 0.931 and 0.969, respectively. The predictive performance improves due to reduced peak emissions resulting from improved fuel detergency. Elevated gasoline detergency not only reduces exhaust emissions but also facilitates more refined emission management to a certain extent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.