Abstract

Two-dimensional metal oxide sheets in HTiNbO(5) and HSr(2)Nb(3)O(10), cation-exchangeable layered metal oxides, were examined as solid acid catalysts. Exfoliation of HTiNbO(5) and HSr(2)Nb(3)O(10) in aqueous solutions formed colloidal single-crystal TiNbO(5)(-) and Sr(2)Nb(3)O(10)(-) nanosheets, which precipitated under an acidic condition to form aggregates of HTiNbO(5) nanosheets and HSr(2)Nb(3)O(10) nanosheets. Although esterification of acetic acid, cracking of cumene, and dehydration of 2-propanol were not catalyzed by original HTiNbO(5) because of the narrow interlayer distance, which prevents the insertion of organic molecules, HTiNbO(5) nanosheets functioned as a strong solid acid catalyst for the reactions. Nanosheets of HSr(2)Nb(3)O(10) exhibited no or slight catalytic activity for these reactions. NH(3) temperature-programmed desorption and (1)H magic-angle spinning nuclear magnetic resonance spectroscopy revealed that HTiNbO(5) nanosheets have strong Brønsted acid sites, whereas HSr(2)Nb(3)O(10) nanosheets do not.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.