Abstract

On the basis of exergetic analysis, the performance analysis and optimization of a generalized irreversible thermoacoustic engine with heat resistance, heat leakage, thermal relaxation and internal dissipation, in which heat transfer between the working fluid and heat reservoirs obeys a complex generalized heat transfer law , where n is a complex, is investigated by taking exergetic efficiency as the optimization objective using finite-time thermodynamics. Both the real part and the imaginary part of the complex heat transfer exponent change the optimal exergy efficiency versus power output relationship. Analytical formulas for the exergy efficiency, power output and thermal efficiency of the thermoacoustic engine are derived. Furthermore, comparative analyses of the influences of various factors on optimal performance of the generalized irreversible thermoacoustic engine are carried out with detailed numerical examples. The optimal zone on the performance of the thermoacoustic engine is obtained by numerical analysis. The results obtained herein can provide some theoretical guidelines for the design of a real thermoacoustic engine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.