Abstract

Jet impingement is a promising cooling mechanism to increase the rate of heat transfer in solar air collector. However, the effects of an impinging air jet on the exergetic performance of a bifacial photovoltaic-thermal with different packing factors are entirely unclear. In this research, a jet impingement bifacial photovoltaic-thermal solar air collector was developed and its exergetic performance was assessed. Jet plate reflectors with different geometric configurations are proposed to enhance the cooling and light absorption at the rear part of the bifacial photovoltaic module. Additionally, the link between exergetic performance and each variable’s design and operational characteristics was examined through indoor experiments. The results showed that the maximum exergy efficiency of the bifacial photovoltaic-thermal with packing factor of 0.66 and 36-hole jet plate reflector has 11.88% under solar irradiance of 900 W/m2, and mass flow rate of 0.025 kg/s. The maximum exergy input, exergy destruction, and improvement potential of the proposed system are 402.81 W, 345.62 W, and 304.78 W, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.