Abstract

The Wnt-signaling pathway regulates β-cell functions. It is not known how the expression of endogenous Wnt-signaling molecules is regulated in β-cells. Therefore, we investigated the effect of antidiabetic drugs and glucose on the expression of Wnt-signaling molecules in β-cells. Primary islets were isolated and cultured. The expression of Wnt-signaling molecules (Wnt-4, Wnt-10b, Frizzled-4, LRP5, TCF7L2) and TNFα was analyzed by semiquantitative PCR and Western blotting. Transient transfections were carried out and proliferation assays of INS-1 β-cells performed using [(3)H]thymidine uptake and BrdU ELISA. Insulin secretion was quantified. A knockdown (siRNA) of Wnt-4 in β-cells was carried out. Exendin-4 significantly increased the expression of Wnt-4 in β-cells on the mRNA level (2.8-fold) and the protein level (3-fold) (P < 0.001). The effect was dose dependent, with strongest stimulation at 10 nM, and it was maintained after long-term stimulation over 4 wk. Addition of exd-(9-39), a GLP-1 receptor antagonist, abolished the effect of exendin-4. Treatment with glucose, insulin, or other antidiabetic drugs had no effect on the expression of any of the examined Wnt-signaling molecules. Functionally, Wnt-4 antagonized the activation of canonical Wnt-signaling in β-cells. Wnt-4 had no effect on glucose-stimulated insulin secretion or insulin gene expression. Knocking down Wnt-4 decreased β-cell proliferation to 45% of controls (P < 0.05). In addition, Wnt-4 and exendin-4 treatment decreased the expression of TNFaα mRNA in primary β-cells. These data demonstrate that stimulation with exendin-4 increases the expression of Wnt-4 in β-cells. Wnt-4 modulates canonical Wnt signaling and acts as regulator of β-cell proliferation and inflammatory cytokine release. This suggests a novel mechanism through which GLP-1 can regulate β-cell proliferation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.