Abstract

The form invariant coherent pulse propagation in semiconductors excited at 1s-exciton resonance is studied analytically using the reduced semiconductor Maxwell-Bloch equations. The sech-shaped pulse solution for excitonic self-induced transparency (SIT) is presented, showing significant difference in comparison with the well known SIT solution for non-interacting two-level systems. In contrast to 2π pulses in atomic systems, the phenomenon of SIT of interacting excitons in semiconductors occurs for the pulses of area 1.07π. Possible applications of the SIT solitons in semiconductor all-optical switching devices are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.