Abstract

We investigate exciton states theoretically in strained GaN/AlN quantum dots with wurtzite (WZ) and zinc-blende (ZB) crystal structures, as well as strained WZ GaN/AlGaN quantum dots. We show that the strain field significantly modifies the conduction- and valence-band edges of GaN quantum dots. The piezoelectric field is found to govern excitonic properties of WZ GaN/AlN quantum dots, while it has a smaller effect on WZ GaN/AlGaN, and very little effect on ZB GaN/AlN quantum dots. As a result, the exciton ground state energy in WZ GaN/AlN quantum dots, with heights larger than 3 nm, exhibits a redshift with respect to the bulk WZ GaN energy gap. The radiative decay time of the redshifted transitions is large and increases almost exponentially from 6.6 ns for quantum dots with height 3 nm to 1100 ns for the quantum dots with height 4.5 nm. In WZ GaN/AlGaN quantum dots, both the radiative decay time and its increase with quantum-dot height are smaller than those in WZ GaN/AlN quantum dots. On the other hand, the radiative decay time in ZB GaN/AlN quantum dots is of the order of 0.3 ns, and is almost independent of the quantum-dot height. Our results are in good agreement with available experimental data and can be used to optimize GaN quantum-dot parameters for proposed optoelectronic applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.