Abstract
Förster resonance energy transfer theory (FRET) and a simple random walk (RW) are both implemented in a dynamic Monte Carlo simulation with the aim of determining the exciton diffusion length from photoluminescence (PL) measurements. The calculated diffusion lengths obtained from both models are shown to be the same. As such, given that the computational time of a random walk is typically 2–3 orders of magnitude smaller than the FRET approach, this work shows that the RW methodology can be a preferable model for the determination of diffusion lengths. We also show that the RW approach may also be implemented in Monte Carlo simulations that describe organic solar cells. Despite the fact that (compared with FRET) RW does not account for non-nearest neighbor hopping or energy relaxation, we show that the resulting overestimation of the simulated current will not exceed 2% for typical OPV parameters. In addition, by taking advantage of the gain in speed we are able to investigate the impact of the exciton diffusion length on the optimal interface distance and show that materials with longer exciton diffusion lengths are less sensitive to variations in the morphology of the active layer of an organic solar cell.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.