Abstract

AbstractAlthough a few semiconductors can directly absorb infrared light, their intrinsic properties like improper band‐edge position and strong electron–hole interaction restrict further photocatalytic applications. Herein, we propose an exciton‐mediated energy transfer strategy for realizing efficient infrared light response in heterostructures. Using black phosphorous/polymeric carbon nitride (BP/CN) heterojunction, CN could be indirectly excited by infrared light with the aid of nonradiatively exciton‐based energy transfer from BP. At the same time, excitons are dissociated into free charge carriers at the interface of BP/CN heterojunction, followed by hole injection to BP and electron retainment in CN. As a result of these unique photoexcitation processes, BP/CN heterojunction exhibits promoted conversion rate and selectivity in amine–amine oxidative coupling reaction even under infrared light irradiation. This study opens a new way for the design of efficient infrared light activating photocatalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.