Abstract

We show that the coupling to vibrational degrees of freedom can drive a semimetal excitonic-insulator quantum phase transition in an one-dimensional two-band f-c electron system at zero temperature. The insulating state typifies an excitonic condensate accompanied by a finite lattice distortion. Using the projector-based renormalization method we analyze the ground-state and spectral properties of the interacting electron-phonon model at half-filling. In particular we calculate the momentum dependence of the excitonic order parameter function and determine the finite critical interaction strength for the metal-insulator transition to appear. The electron spectral function reveals the strong hybridization of f- and c-electron states and the opening of a single-particle excitation gap. The phonon spectral function indicates that the phonon mode involved in the transition softens (hardens) in the adiabatic (non-adiabatic and extreme anti-adiabatic) phonon frequency regime.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.