Abstract

Techniques to compute hadron properties from lattice QCD rely upon the limit of long time separation. For baryons, the signal-to-noise problem often restricts one to time separations that are not ideally long, and for which couplings to excited states can obstruct the isolation of ground-state baryon properties. We consider excited-state contamination in nucleon two- and three-point functions. Using chiral perturbation theory, we determine couplings to pion-nucleon and pion-delta excited states. In two-point functions, these contributions are small, in accordance with general properties of the spectral weights on a torus. For the axial-current correlation function in the nucleon, the sign of excited-state contributions suggests overestimation of the nucleon axial charge. Thus contamination from pion-nucleon excited states will not likely explain the trend in lattice QCD data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.