Abstract

State-specific complete active space self-consistent field (SS-CASSCF) theory has emerged as a promising route to accurately predict electronically excited energy surfaces away from molecular equilibria. However, its accuracy and practicality for chemical systems of photochemical interest have yet to be fully determined. We investigate the performance of the SS-CASSCF theory for the low-lying ground and excited states in the double bond rotation of ethylene. We show that state-specific approximations with a minimal (2e,2o) active space provide comparable accuracy to state-averaged calculations with much larger active spaces, while optimizing the orbitals for each excited state significantly improves the spatial diffusivity of the wave function. However, the incorrect ordering of state-specific solutions causes excited state solutions to coalesce and disappear, creating unphysical discontinuities in the potential energy surface. Our findings highlight the theoretical challenges that must be overcome to realize practical applications of state-specific electronic structure theory for computational photochemistry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.