Abstract

Design and synthesis of fluorescent nucleobase analogues for studying structures and dynamics of nucleic acids have attracted much attention in recent years. In the present work, a comprehensive theoretical study of electronic transitions of naphtho-homologated base analogues, namely, xxC, xxT, xxA, and xxG, was performed. The nature of the low-lying excited states was discussed, and the results were compared with those of x-bases. Geometrical characteristics of the lowest excited singlet ππ* states were explored using the CIS method. The calculated excitation maxima are 423, 397, 383, and 357 nm for xxA, xxG, xxC, and xxT, respectively, and they are greatly red-shifted compared with x-bases and natural bases, allowing them to be selectively excited in the presence of the natural bases. In the gas phase, the fluorescence from them would be expected to occur around 497, 461, 457, and 417 nm, respectively. The effects of methanol solution, deoxyribose, and base paring with their complementary natural bases on the relevant absorption and emission spectra of these modified bases were also examined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.