Abstract

Compounds and complexes with mixed-valence electronic ground states, such as the Creutz-Taube ion, have proven to be excellent vehicles through which to study intramolecular electron-transfer processes. In a recent contribution by Cadranel and co-workers, time-resolved pump-probe spectroscopy reveals photo-induced metal-to-bridge charge transfer within the homovalent analogue of the Creutz-Taube ion, [{(NH3 )5 Ru}(μ-pz){Ru(NH3 )5 }]4+ , giving rise to two closely lying excited states with mixed-valence character, one with a shorter lifetime (τ=136 ps) and weakly-coupled (Robin-Day Class II) character, the other a longer-lived (τ=2.8 ns) configurational isomer with more delocalized electronic structure. Electron transfer reactions from the longer-lived species demonstrate analogies with the photo-induced reactions of the photosynthetic special pair, suggesting this state as a reference system for excited state mixed-valency, and a framework from which to explore photocatalytic reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.