Abstract

Acute excitotoxicity in embryonic chick retina and the ability of Cl- channel blockers to prevent toxicity were evaluated by measurement of endogenous amino acid release and histology. Treatment of retina with kainate, quisqualate, or N-methyl-D-aspartate resulted in a large dose-dependent release of gamma-aminobutyric acid and taurine, moderate release of glutamine and alanine, and no measurable release of glutamate or aspartate. Concentrations inducing maximal gamma-aminobutyric acid release were 50 microM quisquaalate, 100 microM kainate, and 100 microM N-methyl-D-aspartate. Treatment with 1 mM glutamate resulted in significant gamma-aminobutyric acid release, as well as an elevation in medium aspartate levels. Typical excitotoxic retinal lesions were produced by the agonists and, at the lower concentrations tested, revealed a regional sensitivity. There was a positive correlation between the amount of gamma-aminobutyric acid release and the extent of tissue swelling, suggesting that release may be secondary to toxic cellular events. Omission of Cl- completely blocked cytotoxic effects due to kainate or glutamate. Likewise, addition of the Cl-/bicarbonate anion channel blocker 4,4'-diisothiocyanatostilbene-2,2'-disulfonate at 600 microM protected retina from cytotoxic damage from all excitotoxic analogs and restored amino acid levels to baseline values. Furosemide, which blocks Na+/K+/2Cl- cotransport, was only minimally effective in reducing amino acid release induced by the agonists. Consistent with the latter, histological examination showed the continued presence of the lesion but with general reduction of cellular edema. These results indicate that although influx of Cl- is a central component of the acute excitotoxic phenomenon, mechanisms other than passive Cl- flux may be involved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.