Abstract

We propose and analyze a general approach for coupling a free space uniformly polarized beam to a desired hollow waveguide mode, thus enabling a single mode operation. The required spatial polarization state manipulation is achieved by use of inhomogeneous anisotropic subwavelength structures. Demonstration is obtained by coupling a linearly polarized CO(2) laser beam at a wavelength of 10.6 mum to the TE(01), TM(01), EH(11), EH(21), and EH(31) modes of a 300 mum diameter dielectric-coated hollow metallic waveguide. Full polarization and intensity analysis of the beam at the waveguide's inlet and outlet ports indicates a high coupling efficiency to a single waveguide mode. Finally, shaping the waveguide mode to a nearly diffraction limited linearly polarized beam and to a radially polarized vectorial vortex are also demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.