Abstract

A sensitive endonuclease assay was used to study the fate of pyrimidine dimers introduced by ultraviolet irradiation into the nuclear deoxyribonucleic acid of the cellular slime mold Dictyostelium discoideum. Analysis of the frequency of T4 endonuclease V-induced single-strand breaks by alkaline sucrose gradient sedimentation showed that strain NC4 (rad+) removed greater than 98% of the dimers induced by irradiation at 40 J/m2 (254 nm) within 215 min after irradiation. HPS104 (radC44), a mutant sensitive to ultraviolet irradiation, removed 91% under these conditions, although at a significantly slower rate than NC4: only 8% were removed during the 10- to 15-min period immediately after irradiation, whereas NC4 excised 64% during this interval. HPS104 thus appears to be deficient in the activity(ies) responsible for rapidly incising ultraviolet-irradiated nuclear deoxyribonucleic acid at the sites of pyrimidine dimers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.