Abstract

Respiratory syncytial virus (RSV) is the leading cause of respiratory infection in young children and high-risk adults. However, a specific treatment for this viral infection is not currently available. In this study, we discovered that an exchange protein directly activated by cyclic AMP (EPAC) can serve as a potential therapeutic target for RSV. In both lower and upper epithelial cells, treatment with EPAC inhibitor (ESI-09), but not protein kinase A inhibitor (H89), significantly inhibits RSV replication and proinflammatory cytokine/chemokine induction. In addition, RSV-activated transcriptional factors belonging to the NF-κB and IRF families are also suppressed by ESI-09. Through isoform-specific gene knockdown, we found that EPAC2, but not EPAC1, plays a dominant role in controlling RSV replication and virus-induced host responses. Experiments using both EPAC2 knockout and EPAC2-specific inhibitor support such roles of EPAC2. Therefore, EPAC2 is a promising therapeutic target to regulate RSV replication and associated inflammation.IMPORTANCE RSV is a serious public health problem, as it is associated with bronchiolitis, pneumonia, and asthma exacerbations. Currently no effective treatment or vaccine is available, and many molecular mechanisms regarding RSV-induced lung disease are still significantly unknown. This project aims to elucidate an important and novel function of a protein, called EPAC2, in RSV replication and innate inflammatory responses. Our results should provide an important insight into the development of new pharmacologic strategies against RSV infection, thereby reducing RSV-associated morbidity and mortality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.