Abstract
We present a scattering model for nuclei with similar masses. In this three-body model, the projectile has a core+valence structure, whereas the target is identical to the core nucleus. The three-body wave functions must be symmetrized for the exchange of the cores. This property gives rise to non-local potentials, which are computed without approximation. The present model is an extension of the Continuum Discretized Coupled Channel (CDCC) formalism, with an additional treatment of core exchange. We solve the coupled-channel system, including non-local terms, by the $R$-matrix method using Lagrange functions. This model is applied to the $^{13}{\rm C}+^{12}$C, $^{13}{\rm N}+^{12}$C and $^{16}{\rm O}+^{12}$C systems. Experimental scattering cross sections are fairly well reproduced without any parameter fitting. The backward-angle enhancement of the elastic cross sections is due to the non-local potential. We discuss in more detail the various non-local contributions and present effective local potentials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.