Abstract

The electronic structure of so-called 'xenophilic' clusters, which contain both organometallic fragments and Werner-type paramagnetic transition metal centres, presents a challenge to simple theories of bonding. Density functional theory shows clearly that the cluster Mn(2)(thf)(4)(Fe(CO)(4))(2) is best described as an exchange-coupled Mn(II)(2) dimer, the closed-shell organometallic [Fe(CO)(4)](2-) fragments acting simply as bridging ligands. The high-spin configuration of the Mn(II) ions leads to single occupation of the Mn-Fe σ* orbitals and therefore substantially weaker metal-metal bonding than in conventional low-valent organometallic clusters. The transition metal fragments are effective mediators of superexchange (J(calc) = -44 cm(-1)), leading to the measured effective magnetic moment of ~5 μ(B) at 300 K, considerably lower than the limiting value of 8.37 μ(B) for two uncoupled S = 5/2 Mn(II) centres.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.