Abstract

One-dimensional core–shell nanostructures consisting of a ferromagnetic cobalt core and a multiferroic BiFeO3 (BFO) shell were fabricated by an artificial two-step methodology. The coupling between the ferromagnetic core and multiferroic shell manifests a significant exchange bias effect which gives a clear demonstration of the anti-ferromagnetic functionality of the BFO shell material. Exchange biases of 30 Oe and 60 Oe are observed at 300 K and at 5 K, respectively. Superparamagnetic contributions at lower temperatures play an important role in contributing to overall magnetic behavior. Dominant shape anisotropy causes parallel alignment of the easy magnetization axis along the axis of core–shell nanowires. A coherent mode of the magnetization reversal mechanism is observed by the angular dependence of coercivity (Hc). This versatile two-step methodology can be employed to fabricate and investigate many other hybrid nanostructures leading to a vast scope of investigation for researchers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.