Abstract

Density and isobaric heat capacity per unit volume were determined for aqueous mixtures of 1,2-ethanediol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, and 1,2-hexanediol over the whole composition range in the temperature interval (283.15–313.15)K at atmospheric pressure. From these data, excess molar volumes and excess isobaric molar heat capacities were obtained. The comparison of experimental data with literature values shows quite good agreement, not only for absolute magnitudes, but also for excess quantities. Excess volumes are negative over the whole composition range and they become more ideal (less negative) as temperature increases. Excess isobaric molar heat capacity is mostly positive, although it is negative for some mixtures at several compositions and temperatures. Moreover, it was found that it presents a maximum at low mole fraction of the alcohol for most systems, as it was previously found for alkanol+water mixtures. As for temperature dependence, excess isobaric molar heat capacity increases with raising temperature in all cases. This increase is more pronounced for concentrated solutions of dialcohol, with the exception of the 1,2-hexanediol system. The obtained results are interpreted in terms of well-known arguments based on definition of excess magnitudes and chemical nature of the compounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.