Abstract
The industrial waste streams with excess phosphorus acid (H3PO4) was generated in semiconductor industries that has extremely low pH rendering commercial adsorbents unfit for adsorption recycling of valuable materials. This study for the first time use covalent organic framework EB-COF:Br to adsorb phosphoric acid from extremely acidic H3PO4 solutions at pH ranging 0.86 to −0.65. The EB-COF:Br could maintain structural stability with these extremely acidic solutions. At 25 °C, 95% adsorption could be completed within 10 min of contact; while the adsorption capacities of EB-COF:Br from 75% H3PO4 solution ranged 6520‒6980 mg-H3PO4/g during 25–45 °C. The adsorption is regarded isoenthalpic with no heat effects. Water washing is efficient for H3PO4 desorption, and the washed COF can be reused as an efficient adsorbent under extremely acidic environment. The interactions between (‒N+=) and (‒CO) groups, and part of the (‒NH‒) groups participated in the adsorption process with adsorbed H3PO4 molecules. The adsorbed H3PO4 molecules then formed H-bonding to trap the excess free H3PO4 molecules to the internal cavity of the COF.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.