Abstract

Femtosecond pump-probe (PP) differential reflectivity spectroscopy (DRS) and four-wave mixing (FWM) experiments were performed simultaneously to study the initial temporal dynamics of the exciton line-shapes in GaN epilayers. Beats between the A-B excitons were found \textit{only for positive time delay} in both PP and FWM experiments. The rise time at negative time delay for the differential reflection spectra was much slower than the FWM signal or PP differential transmission spectroscopy (DTS) at the exciton resonance. A numerical solution of a six band semiconductor Bloch equation model including nonlinearities at the Hartree-Fock level shows that this slow rise in the DRS results from excitation induced dephasing (EID), that is, the strong density dependence of the dephasing time which changes with the laser excitation energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.