Abstract

The maximal lifespan of Anthropoid primates (monkeys, apes and humans) exceed the lifespan of most other mammals of equal body mass. Unexpectedly, their exceptional longevity is associated with exceptionally high metabolic rates, in apparent contradiction to the Free Radical Theory of Aging. It was therefore suggested that in anthropoid primates (and several other taxa of mammals and birds) the mitochondrial electron transport complexes evolved to modify the relationship between basal electron transport and superoxide generation to allow for the evolution of exceptional longevity. Cytochrome b, the core protein of the bc1 complex is a major source of superoxide. The amino-acid sequence of cytochrome b evolved much faster in anthropoid than in prosimian primates, and most other mammals, resulting in a large change in the amino-acids composition of the protein. As a result of these changes cytochrome b in anthropoid primates is significantly less hydrophobic and contains more polar residues than other primates and most other mammals. Most of these changes are clustered around the reduction site of uboiquinone. In particular a key positively charged residue, arginine 313, that interacts with propionate D of heme bH, and thus raises its redox potential, is substituted in anthropoid primates with the neutral residue glutamine, most likely resulting in a lower redox potential of heme bH and faster reduction of ubiquinone at high proton motive force. It is suggested that these changes contribute to the observed increased rates of basal metabolism and reduce the rates of superoxide production, thus allowing for increased lifespan.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.