Abstract

Addressing the rising concerns of water pollution caused by harmful inorganic and organic contaminants is very crucial and photocatalysts with exceptional light harvesting capability are a promising way to tackle these issues. This study investigates the transformation of CaTiO3 into a visible light-active photocatalyst via copper doping. Copper-doped CaTiO3 nanocuboids were synthesized via a one-step solvothermal approach, resulting in the formation of distinctive nanostep substructures on the surface. Morphological analysis revealed the successful incorporation of copper ions into the perovskite matrix, as evidenced by the transition from smooth to rough, uneven surface features. X-ray diffraction confirmed the incorporation of Cu2+ ions into the Ti4+ site, while visible range absorption indicated a reduction in the bandgap. Furthermore, doping decreased the rate of charge carrier recombination and increased their average lifetime, prolonging the duration of active species. This modification facilitating efficient absorption of visible light and increase in the charge separation, leads to enhanced photocatalytic activity. The doped catalyst exhibited exceptional performance in the remediation of hexavalent chromium ions (98.5 % Cr6+ ions reduction to Cr3+ ions in 20 min), methylene blue (99.4 % degradation within 120 min), and eosin yellow (99.8 % degradation within 80 min) pollutants. This research underscores the potential of doping as a viable strategy for tailoring photocatalytic properties and addressing water pollution challenges.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.