Abstract
Ordinarily, a trimaterial structure comprising a sufficiently thin metal film interposed between two homogeneous dielectric materials guides compound plasmon-polariton (CPP) waves, for which the fields on both sides of the metal film decay exponentially with distance from the nearest metal/dielectric interface. However, if one of the dielectric materials is anisotropic, then the trimaterial structure can guide an exceptional CPP wave for a particular propagation direction. On the side of the metal film occupied by the anisotropic dielectric material, the fields of the exceptional CPP wave decay as the product of a linear function and an exponential function of the distance from the nearest metal/dielectric interface. The canonical boundary-value problem for CPP-wave propagation has been analyzed and solved numerically; thereby, the spatial field profiles for exceptional CPP waves for a uniaxial-dielectric/metal/isotropic-dielectric structure have been established.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.