Abstract

High-power solid-state lasers with good beam quality are attracting great attention on account of their important applications in industry and military. However, the thermal effects generated in the laser host materials seriously limit power scaling and degrade the beam quality. Thermal lensing and thermally induced wavefront deformation are the main causes of the beam quality deterioration. Here we investigate the performance of a zero thermal expansion (ZTE) solid-state laser gain material. In a proof-of-principle experiment, an ${a}$-cut rod ${\rm Nd}\!:\!{{\rm YAlO}_3}$ (Nd:YAP) perovskite crystal is chosen to be the gain medium for ZTE around 180 K. The laser performance spanning the temperature range from 80 to 290 K is studied. The maximum output power and minimum threshold pump power were obtained at a temperature of 180 K. Moreover, the measured thermal focal power and peak-to-valley value of the wavefront distortion also reach a minimum at this temperature, an additional benefit from the crystal's ZTE coefficient. We envisage that these results will open a new route towards the development of high-power and high-beam-quality lasers through the use of ZTE gain materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.