Abstract

Photocatalytic technology for inactivating bacteria in water has received much attention. In this study, we reported a dark-light dual-mode sterilized g-C3N4/chitosan/poly (vinyl alcohol) hydrogel (g-CP) prepared through freeze-thaw cycling and an in situ electron-beam radiation method. The structures and morphologies of g-CP were confirmed using Fourier infrared spectroscopy (FTIR), X-ray diffraction spectroscopy (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), solid ultraviolet diffuse reflectance spectroscopy (UV-vis DRS), and Brunauer-Emmett-Teller (BET). Photocatalytic degradation experiments demonstrated that 1 wt% g-CP degraded rhodamine B (RhB) up to 65.92% in 60 min. At the same time, g-CP had good antimicrobial abilities for Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) within 4 h. The shapes of g-CP were adjustable (such as bar, cylinder, and cube) and had good mechanical properties and biocompatibility. The tensile and compressive modulus of 2 wt% g-CP were 0.093 MPa and 1.61 MPa, respectively. The Cell Counting Kit-8 (CCK-8) test and Hoechst33342/PI double staining were used to prove that g-CP had good biocompatibility. It is expected to be applied to environmental sewage treatment and wound dressing in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.