Abstract

Input-output have emerged as a practical and user-friendly specification mechanism for program synthesis in many environments. While example-driven tools have demonstrated tangible impact that has inspired adoption in industry, their underlying semantics are less well-understood: what are examples and how do they relate to other kinds of specifications? This paper demonstrates that can, in general, be interpreted as refinement types. Seen in this light, program synthesis is the task of finding an inhabitant of such a type. This insight provides an immediate semantic interpretation for examples. Moreover, it enables us to exploit decades of research in type theory as well as its correspondence with intuitionistic logic rather than designing ad hoc theoretical frameworks for synthesis from scratch. We put this observation into practice by formalizing synthesis as proof search in a sequent calculus with intersection and union refinements that we prove to be sound with respect to a conventional type system. In addition, we show how to handle negative examples, which arise from user feedback or counterexample-guided loops. This theory serves as the basis for a prototype implementation that extends our core language to support ML-style algebraic data types and structurally inductive functions. Users can also specify synthesis goals using polymorphic refinements and import monomorphic libraries. The prototype serves as a vehicle for empirically evaluating a number of different strategies for resolving the nondeterminism of the sequent calculus---bottom-up theorem-proving, term enumeration with refinement type checking, and combinations of both---the results of which classify, explain, and validate the design choices of existing synthesis systems. It also provides a platform for measuring the practical value of a specification language that combines examples with the more general expressiveness of refinements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.