Abstract

Laboratory batch experiments were conducted to examine mechanisms of Hg(II) removal by reactive materials proposed for groundwater treatment. These materials included granular iron filings (GIF), 1:1 (w/w) mixtures of metallurgical granular Fe powder + elemental S (MGI+S) and elemental Cu + elemental S (Cu+S), granular activated carbon (GAC), attapulgite clay (ATP), ATP treated with 2-amino-5-thiol-1,3,4-thiadiazole (ATP-a), and ATP treated with 2,5-dimercapto-1,3,4-thiadiazole (ATP-d). Following treatment of simulated groundwater containing 4 mg L(-1) Hg for 8 or 16 days, the solution pH values ranged from 6.8 to 8.8 and Eh values ranged from +400 to -400 mV. Large decreases in aqueous Hg concentrations were observed for ATP-d (>99%), GIF (95%), MGI+S (94%), and Cu+S (90%). Treatment of Hg was less effective using ATP (29%), ATP-a (69%), and GAC (78%). Extended X-ray absorption fine structure (EXAFS) spectra of Hg on GIF, MGI+S, and GAC indicated the presence of an Hg-O bond at 2.04-2.07 Å, suggesting that Hg was bound to GIF corrosion products or to oxygen complexes associated with water sorbed to activated carbon. In contrast, bond lengths ranging from 2.35 to 2.48 Å were observed for Hg in Cu+S, ATP-a, and ATP-d treatments, suggesting the formation of Hg-S bonds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.