Abstract
Due to excellent characteristics of specific stiffness and thermal stability, silicon carbide-based (SiC) material is commonly selected to construct large-scale lightweight mirror. In general, the fabrication process of SiC mirror is similar to the casting process. The blank error of SiC mirror is 0~1 mm. Due to the high hardness of SiC, only the mirror surface and some positioning surface will be milled. The mirror surface accuracy will be degraded due to the fact that the blank error can cause significant changes in weight distribution. In this paper, Monte Carlo analysis is firstly performed to examine the blank error on gravity center, stiffness and mirror accuracy of a SiC mirror. It is found that according to the designed mount location, the amount of degradation is more than 2.5 nm of which the probability is 40.3%. It is known that the error of gravity center can be compensated by optimizing the axial mount location. Then inverse modeling and testing of gravity center for the SiC mirror is carried out in order to determine the optimal axial mount location. Based on the proposed method, the mirror degradation introduced by the blank error has been eliminated to the greatest extend.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.