Abstract

For many technical applications, a detailed analysis of the fluid mechanical properties is necessary, for which computational fluid dynamics (CFD) simulations are used. However, even though flow simulations are becoming faster and more accurate, validation through experimentation is essential. One way of validation is to use Particle Image Velocimetry (PIV), an imaging technique that can visualize the flow field and measure flow velocities. Since the measuring equipment of commercial systems is very expensive, we propose a low-cost PIV setup that is also affordable for small scientific institutions. In addition to the quality of the acquired images, the reliability and comparability between experiment and simulation are also important issues. Therefore, in this work, we compare the image acquisition quality of the proposed low-cost PIV system with two- and three-dimensional CFD simulations for a laminar Couette flow and a laminar flow around square and hexagonal obstacles with very good agreement. In addition, we analyzed the transferability of 2D and 3D CFD simulations with experiments by measuring the velocity field and found that experimentally determined flow velocities often cannot be used to validate idealized (2D) simulations due to the spatial flow that occurs. However, if the non-ideal conditions of the experiment are considered in the (3D) simulation, a good comparability is given and an experimental validation is possible, for which the presented low-cost PIV system is well suitable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.