Abstract
AbstractIt has been generally accepted that increasing aerosols suppress precipitation. The aerosol‐induced precipitation suppression was suggested by the study of shallow stratiform clouds. Recent studies of convective clouds showed increasing aerosols could increase precipitation. Those studies showed that intense feedbacks between aerosols and cloud dynamics led to increased precipitation in some cases of convective clouds. This study expanded those studies by analyzing detailed microphysical and dynamical modifications by aerosols leading to increased precipitation. This study focused on three observed cases of mesoscale cloud ensemble (MCE) driven by deep convective clouds, since MCE accounts for a large proportion of the Earth's precipitation and the study of aerosol effects on MCE is at its incipient stage. Those MCEs were observed during the 1997 Atmospheric Radiation Measurement (ARM) summer experiment. Two numerical experiments were performed for each of the MCEs to simulate aerosol effects on deep convection. The first was with high aerosol number concentration, and the second was with low concentration. The results showed an increased precipitation at high aerosol, due to stronger, more numerous updraughts, initiated by stronger convergence lines at the surface in convective regions of the MCE. The stronger convergence lines were triggered by increased evaporation of cloud liquid in the high‐aerosol case, made possible by higher values of cloud liquid necessary for autoconversion.The generality of these results requires further investigation. However, they demonstrate that the response of precipitation to increased aerosols in deep convection can be different from that in shallow cloud systems, at least for the cases studied here. Copyright © 2008 Royal Meteorological Society
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Quarterly Journal of the Royal Meteorological Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.