Abstract

Abstract Arsenic compounds are classified as Class I carcinogens due to their high toxicity to the organism. Also, they are easily accumulated in water bodies, and both H2AsO4− and HAsO42− are present simultaneously and convert to each other in a wide pH range. Based on the strategy of simultaneous removal of protons to immobilize AsO43−, a monodispersed porous pinecone-like Mg(OH)2 (PLMH) was prepared via a facile and environmentally friendly ultrasound-assisted precipitation route for deep As(V) removal. The PLMH presents a porous and stable framework structure formed by crossed lamellae, and the As(V) solution can be completely immersed inside, which gives a ‘surface effect’ inside the microsphere and makes the As(V) capture performance much higher than the general adsorbents by the removal of protons to immobilize AsO43−. In addition, the PLMH has an extremely wide pH applicability range (pH 3–12), special pH effects, and symmetry phenomena. These performances indicate that the PLMH can be a good candidate for the treatment of real arsenic industrial wastewater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.