Abstract

A closed, uncountably infinite dimensional system of “quantum object + thermostat” is mathematically stated in terms of a complex probabilistic process for the wave function, i.e. the solution of Langevin-Schrodinger (L-Sch)-type stochastic differential equation (SDE). The L-Sch SDE has been studied for nonstationary 1D random potential with quadratic space form. It was proved that when the random processes in potential determined by δ-shaped correlators, then closed, exactly solvable nonrelativistic quantum mechanics may be constructed. In this case all physically measured parameters of the system are built as multiple integrals of the fundamental solution of some second-order partial differential equations (etalon equations). In the present work we obtain expressions for transition probabilities in a quantum subsystem. It is shown that depending on the coupling constant of the thermostat with the parametric quantum harmonic oscillator (PQHO), some phase transitions of second kind may occur in the expressions for microscopic quantum transitions. A method of stochastic density matrix is developed for calculation of thermodynamic potentials of the quantum harmonic oscillator (QHO) immersed into a thermostat. The analytic expressions for the ground state energy level widening and shift of QHO are obtained. In other words the possibility of violating the second law of thermodynamics due to quantum fluctuations, (i.e., spontaneous transitions in QHO from vacuum to the excited states) is shown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.