Abstract

We introduce an exactly solvable fermion chain that describes a ν=1/3 fractional quantum Hall (FQH) state beyond the thin-torus limit. The ground state of our model is shown to be unique for each center-of-mass sector, and it has a matrix product representation that enables us to exactly calculate order parameters, correlation functions, and entanglement spectra. The ground state of our model shows striking similarities with the BCS wave functions and quantum spin-1 chains. Using the variational method with matrix product ansatz, we analytically calculate excitation gaps and vanishing of the compressibility expected in the FQH state. We also show that the above results can be related to a ν=1/2 bosonic FQH state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.