Abstract

We generalize an efficient exact synthesis algorithm for single-qubit unitaries over the Clifford+T gate set which was presented by Kliuchnikov, Maslov, and Mosca [Quantum Inf. Comput. 13(7,8), 607–630 (2013)]. Their algorithm takes as input an exactly synthesizable single-qubit unitary—one which can be expressed without error as a product of Clifford and T gates—and outputs a sequence of gates which implements it. The algorithm is optimal in the sense that the length of the sequence, measured by the number of T gates, is smallest possible. In this paper, for each positive even integer n, we consider the “Clifford-cyclotomic” gate set consisting of the Clifford group plus a z-rotation by πn. We present an efficient exact synthesis algorithm which outputs a decomposition using the minimum number of πn z-rotations. For the Clifford+T case n = 4, the group of exactly synthesizable unitaries was shown to be equal to the group of unitaries with entries over the ring Z[eiπn,1/2]. We prove that this characterization holds for a handful of other small values of n but the fraction of positive even integers for which it fails to hold is 100%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.